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background the modeling property translation theorem and trees

preliminaries

Fix an L-structure M (L is the signature.)

we assume M is sufficiently saturated, so if a small set exists by
compactness in an elementary extension of M , it exists in M ..

We wish to study the theory of M .
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background the modeling property translation theorem and trees

types

Recall the type of an element,

tpL(a;M) = {ϕ(x) an L-formula |M � ϕ(a)}

L can be replaced by a subset ∆ ⊆ L to get a ∆-type.

We also have the notion of quantifier-free type,

qftpL(a;M) = {θ(x) an L-formula |
θ is quantifier-free, and M � θ(a)}

Roman letters signify the underlying set of a structure, e.g. O
has underlying set O, I has underlying set I ...
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background the modeling property translation theorem and trees

order-indiscernible sets

Let O be any linear order (typically infinite.)

Let bi be finite tuples from M , `(bi) = `(bj) = m:

Definition

B = {bi | i ∈ O} is an order-indiscernible set if for all n ≥ 1, for all
i1, . . . , in, j1, . . . , jn from O,

(i1, . . . , in) 7→ (j1, . . . , jn) is an order-isomorphism⇒
tpL(bi1 , . . . , bin ;M) = tpL(bj1 , . . . , bjn ;M)

Definition

B = {bi | i ∈ O} is an indiscernible set if for all n ≥ 1, for all
i1, . . . , in, j1, . . . , jn from O,

(i1, . . . , in) 7→ (j1, . . . , jn) is a {=}-isomorphism⇒
tpL(bi1 , . . . , bin ;M) = tpL(bj1 , . . . , bjn ;M)
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background the modeling property translation theorem and trees

I-indexed indiscernible sets ∗

Now we fix an arbitrary language L′, and an L′-structure I in
the place of O.

For ı,  from I
(i1, . . . , in) ∼ (j1, . . . , jn)

will mean qftpL′
(i1, . . . , in; I) = qftpL′

(j1, . . . , jn; I).
(∼I if I not clear from context)

Definition ([She90])

B = {bi : i ∈ I} is an I-indexed indiscernible set if for all n ≥ 1,
for all i1, . . . , in, j1, . . . , jn from I,

(i1, . . . , in) ∼ (j1, . . . , jn)⇒ tpL(bi1 , . . . , bin ;M) = tpL(bj1 , . . . , bjn ;M)

Say that B is ∆-I-indexed indiscernible for ∆ ⊆ L if we replace
L in the definition by ∆.
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background the modeling property translation theorem and trees

background: classification theory

A theory T is stable if it does not have the order property, i.e.,
there is no formula ϕ(x; y) in the language of T and parameters
{ai}i<ω from some model of T such that

ϕ(ai; aj)⇔ i < j

Equivalently, for some λ, for all subsets A ⊂M � T s.t. |A| ≤ λ,
|Sn(A)| ≤ λ (for all finite n.)

Equivalently, for any definable set X ⊂Mn (using parameters
from the ambient model), X ∩An is definable using only
parameters from A – the trace of a definable set on A is
A-definable.
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background the modeling property translation theorem and trees

typical application of order-indiscernible sequences

Sometimes to find the order property, we need to look in “higher
dimensions.”

e.g., in the random graph, look at {(ai, bi)}i<ω such that
R(bi, aj) whenever i < j and ¬R(ai, bj) whenever i < j.

. . .

. . .b0 b1 b2

a0 a1 a2

Get θ s.t. θ((ai, bi), (aj , bj))⇔ i < j.

How do we know there is no order in 1-variable?
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background the modeling property translation theorem and trees

using Ramsey’s theorem

Suppose for contradiction there is ϕ(x, y) such that
`(x) = `(y) = 1 and parameters A = {ai}i with

ϕ(ai, aj)⇔ i < j

By Ramsey’s theorem, there is an indiscernible sequence
B = {bi}i with

i < j ⇒M � ϕ(bi, bj)

¬i < j ⇒M � ¬ϕ(bi, bj)

(all “increasing pairs” (i, j) are colored “M � ϕ(ai, aj)” – find a
large enough homogeneous subset A0 ⊂ A to stand for a fragment
of B)

By indiscernibility, B is a complete graph or an empty graph
(thus an indiscernible set) contradicting disagreement on ϕ(x, y).
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background the modeling property translation theorem and trees

NIP ∗

Definition

A theory T has NIP (“not the Independence property”) if there is no
formula ϕ(x; y) in the language of T and parameters {ai}i<ω from
some model of T such that

ϕ(ai; aj)⇔ E(i, j)

where E is the edge relation in the random (Rado) graph.

The theory of (Q, <) is NIP.

The theory of (Z,+, ·) is not NIP.
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background the modeling property translation theorem and trees

characterization theorems ∗

Theorem (Shelah)

A theory T is stable iff any infinite order-indiscernible sequence in a
model of T is an indiscernible set.

Let I be any graph with an ordering on its vertices (in signature
{<,E}) that contains a copy of every finite ordered graph.

Theorem

A theory T is NIP iff any I-indexed indiscernible set in a model of T
is an order-indiscernible set.

Can’t do better because of Th((Q, <)).
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background the modeling property translation theorem and trees

EM-types ∗

For an I-indexed set A = {ai | i ∈ I} we can formally define a
type in variables {xi | i ∈ I} called the
Ehrenfeucht-Mostowski type of A, EM(A).

Definition

EM(A) = {ϕ(xi1 , . . . , xin) | for all (j1, . . . , jn) ∼ (i1, . . . , in),
M � ϕ(aj1 , . . . , ajn)}
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background the modeling property translation theorem and trees

examples

The EM-type encodes rules such as

q(i1, . . . , in)⇒ M � ϕ(ai1 , . . . , ain)

for all i1, . . . , in ∈ I,
where q is a complete (maximally consistent) quantifier-free type
in the language of I.

Example

Consider a set A = {ai | i ∈ (ω,<)} such that i < j ⇒ ϕ(ai, aj) but
¬ϕ(a1, a0) and ϕ(a2, a0), then

ϕ(x0, x1), ϕ(x0, x2), ϕ(x1, x2) . . . ∈ EM(A)

but

ϕ(xi, xj),¬ϕ(xi, xj) /∈ EM(A), for i > j
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background the modeling property translation theorem and trees

the modeling property

Definition

I-indexed indiscernible sets have the modeling property if for
all I-indexed parameters A = {ai : i ∈ I} in any structure M , there
exists an I-indexed indiscernible set B s.t.

B � EM(A)

For which I do I-indexed indiscernible sets have the modeling
property?
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background the modeling property translation theorem and trees

dictionary theorem

Suppose that I is a locally finite structure in a language
L′ = {<, . . .} where < linearly orders I.

Suppose that any complete quantifier-free type realized in I is
the locus of a quantifier-free formula.

Theorem ([Sco13])

For I as above, I-indexed indiscernible sets have the modeling
property just in case age(I) is a Ramsey class.
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background the modeling property translation theorem and trees

application

I0 = (ω<ω,E,∧, <lex)

Theorem (Takeuchi-Tsuboi)

I0-indexed indiscernibles have the modeling property.

Corollary (Leeb)

age(I0) is a Ramsey class.

Removing ∧ destroys the Ramsey property.
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background the modeling property translation theorem and trees

K = age(I0 � {E, <lex}) is not a Ramsey class ∗

Proof.

By [Neš05], if K is a Ramsey class, then K has the amalgamation
property. However, an example analyzed in Takeuchi-Tsuboi provides
a counterexample to amalgamation. Consider embeddings ai 7→ bi, ci.

A:

a0

a2a1 a3

B1:

b0

b2b1 b3

b4
B2:

c0

c2c1 c3

c4
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background the modeling property translation theorem and trees

trees ∗

Is = (ω<ω,E,∧, <lex, (Pn)n<ω)

⇒ age is Ramsey

where E is the partial tree-order, ∧ is the meet function in this
order, <lex is the lexicographical order, and the Pn are predicates
picking out the n-th level of the tree

I1 = (ω<ω,E,∧, <lex, <lev)

⇒ age is Ramsey

where η <lev ν ⇔ `(η) < `(ν) (` = length as a sequence)

I0 = (ω<ω,E,∧, <lex)

⇒ age is Ramsey

I0 � {E, <lex}

⇒ age is not Ramsey

18 / 21
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background the modeling property translation theorem and trees

finitary infinitary

Theorem ([She90])

For every n,m < ω there is some k = k(n,m) < ω such that for any
infinite cardinal χ, the following is true of λ := ik(χ)+: for every
f : (n≥λ)m → χ there is an Ls-subtree I ⊆ n≥λ such that

(i) 〈〉 ∈ I and whenever η ∈ I ∩ n>λ, ||{α < λ : ηa 〈α〉 ∈ I}|| ≥ χ+.

(ii)f If η̄, ν̄ ∈ I are such that η̄ ∼Is ν̄ then
f(η0, . . . , ηm−1) = f(ν0, . . . , νm−1).

Theorem ([Fou99])

age(Is) is a Ramsey class

Both yield that Is-indexed indiscernibles have the modeling property,
the second by way of the dictionary theorem.
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Thanks

Thanks for your attention!
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