Ramsey classes of trees

Lynn Scow

Vassar College

Winter School in Abstract Analysis 2014

<ロ> < 回> < 回> < 言> < 言> < 言> 言のQで 1 / 21

2 the modeling property

3 translation theorem and trees

2/21

preliminaries

• Fix an L-structure M (L is the signature.)

preliminaries

- Fix an L-structure M (L is the signature.)
- we assume M is sufficiently saturated, so if a small set exists by compactness in an elementary extension of M, it exists in M.

preliminaries

- Fix an L-structure M (L is the signature.)
- we assume M is sufficiently saturated, so if a small set exists by compactness in an elementary extension of M, it exists in M.
- We wish to study the theory of M.

• Recall the **type** of an element,

 $\operatorname{tp}^{L}(\overline{a}; M) = \{\varphi(\overline{x}) \text{ an } L\text{-formula } \mid M \vDash \varphi(\overline{a})\}$

L can be replaced by a subset $\Delta \subseteq L$ to get a Δ -type.

• Recall the **type** of an element,

 $\operatorname{tp}^{L}(\overline{a};M) = \{\varphi(\overline{x}) \text{ an } L\text{-formula } \mid M \vDash \varphi(\overline{a})\}$

L can be replaced by a subset $\Delta \subseteq L$ to get a Δ -type.

• We also have the notion of **quantifier-free type**, $qftp^{L}(\overline{a}; M) = \{\theta(\overline{x}) \text{ an } L\text{-formula } |$ $\theta \text{ is quantifier-free, and } M \vDash \theta(\overline{a})\}$

• Recall the **type** of an element,

 $\operatorname{tp}^{L}(\overline{a};M) = \{\varphi(\overline{x}) \text{ an } L\text{-formula } \mid M \vDash \varphi(\overline{a})\}$

L can be replaced by a subset $\Delta \subseteq L$ to get a $\Delta\text{-type.}$

- We also have the notion of **quantifier-free type**, $qftp^{L}(\overline{a}; M) = \{\theta(\overline{x}) \text{ an } L\text{-formula } |$ $\theta \text{ is quantifier-free, and } M \vDash \theta(\overline{a})\}$
- Roman letters signify the underlying set of a structure, e.g. \mathcal{O} has underlying set O, \mathcal{I} has underlying set $I \dots$

◆□▶ ◆□▶ ◆三≯ ◆三≯ →□ ● のへで

• Let \mathcal{O} be any linear order (typically infinite.)

- Let \mathcal{O} be any linear order (typically infinite.)
- Let b_i be finite tuples from M, $\ell(b_i) = \ell(b_j) = m$:

- Let \mathcal{O} be any linear order (typically infinite.)
- Let b_i be finite tuples from M, $\ell(b_i) = \ell(b_j) = m$:

Definition

 $B = \{b_i \mid i \in O\}$ is an **order-indiscernible set** if for all $n \ge 1$, for all $i_1, \ldots, i_n, j_1, \ldots, j_n$ from O,

 $(i_1,\ldots,i_n)\mapsto (j_1,\ldots,j_n)$ is an order-isomorphism \Rightarrow

 $\operatorname{tp}^{L}(b_{i_{1}},\ldots,b_{i_{n}};M)=\operatorname{tp}^{L}(b_{j_{1}},\ldots,b_{j_{n}};M)$

- Let \mathcal{O} be any linear order (typically infinite.)
- Let b_i be finite tuples from M, $\ell(b_i) = \ell(b_j) = m$:

Definition

 $B = \{b_i \mid i \in O\}$ is an **order-indiscernible set** if for all $n \ge 1$, for all $i_1, \ldots, i_n, j_1, \ldots, j_n$ from O,

 $(i_1, \ldots, i_n) \mapsto (j_1, \ldots, j_n)$ is an order-isomorphism \Rightarrow

 $\operatorname{tp}^{L}(b_{i_{1}},\ldots,b_{i_{n}};M)=\operatorname{tp}^{L}(b_{j_{1}},\ldots,b_{j_{n}};M)$

Definition

 $B = \{b_i \mid i \in O\} \text{ is an indiscernible set if for all } n \ge 1, \text{ for all } i_1, \dots, i_n, j_1, \dots, j_n \text{ from } O,$ $(i_1, \dots, i_n) \mapsto (j_1, \dots, j_n) \text{ is a } \{=\}\text{-isomorphism} \Rightarrow$ $\operatorname{tp}^L(b_{i_1}, \dots, b_{i_n}; M) = \operatorname{tp}^L(b_{j_1}, \dots, b_{j_n}; M)$

• Now we fix an arbitrary language L', and an L'-structure \mathcal{I} in the place of \mathcal{O} .

- Now we fix an arbitrary language L', and an L'-structure \mathcal{I} in the place of \mathcal{O} .
- For $\overline{i}, \overline{j}$ from I $(i_1, \dots, i_n) \sim (j_1, \dots, j_n)$ will mean qftp^{L'} $(i_1, \dots, i_n; \mathcal{I}) = qftp^{L'}(j_1, \dots, j_n; \mathcal{I}).$ $(\sim_{\mathcal{I}} \text{ if } \mathcal{I} \text{ not clear from context})$

• Now we fix an arbitrary language L', and an L'-structure \mathcal{I} in the place of \mathcal{O} .

• For
$$\overline{i}, \overline{j}$$
 from I
 $(i_1, \dots, i_n) \sim (j_1, \dots, j_n)$
will mean $\operatorname{qftp}^{L'}(i_1, \dots, i_n; \mathcal{I}) = \operatorname{qftp}^{L'}(j_1, \dots, j_n; \mathcal{I}).$
 $(\sim_{\mathcal{I}} \text{ if } \mathcal{I} \text{ not clear from context})$

Definition ([She90])

 $B = \{b_i : i \in I\}$ is an \mathcal{I} -indexed indiscernible set if for all $n \ge 1$, for all $i_1, \ldots, i_n, j_1, \ldots, j_n$ from I,

$$(i_1,\ldots,i_n) \sim (j_1,\ldots,j_n) \Rightarrow \operatorname{tp}^L(b_{i_1},\ldots,b_{i_n};M) = \operatorname{tp}^L(b_{j_1},\ldots,b_{j_n};M)$$

• Now we fix an arbitrary language L', and an L'-structure \mathcal{I} in the place of \mathcal{O} .

• For
$$\overline{i}, \overline{j}$$
 from I
 $(i_1, \dots, i_n) \sim (j_1, \dots, j_n)$
will mean $\operatorname{qftp}^{L'}(i_1, \dots, i_n; \mathcal{I}) = \operatorname{qftp}^{L'}(j_1, \dots, j_n; \mathcal{I}).$
 $(\sim_{\mathcal{I}} \text{ if } \mathcal{I} \text{ not clear from context})$

Definition ([She90])

 $B = \{b_i : i \in I\}$ is an \mathcal{I} -indexed indiscernible set if for all $n \ge 1$, for all $i_1, \ldots, i_n, j_1, \ldots, j_n$ from I,

$$(i_1,\ldots,i_n) \sim (j_1,\ldots,j_n) \Rightarrow \operatorname{tp}^L(b_{i_1},\ldots,b_{i_n};M) = \operatorname{tp}^L(b_{j_1},\ldots,b_{j_n};M)$$

• Say that B is Δ - \mathcal{I} -indexed indiscernible for $\Delta \subseteq L$ if we replace L in the definition by Δ .

(ロ) (四) (E) (E) (E)

background: classification theory

• A theory T is **stable** if it does not have the order property, i.e., there is no formula $\varphi(\overline{x}; \overline{y})$ in the language of T and parameters $\{\overline{a}_i\}_{i < \omega}$ from some model of T such that

 $\varphi(\overline{a}_i;\overline{a}_j) \Leftrightarrow i < j$

background: classification theory

• A theory T is **stable** if it does not have the order property, i.e., there is no formula $\varphi(\overline{x}; \overline{y})$ in the language of T and parameters $\{\overline{a}_i\}_{i < \omega}$ from some model of T such that

 $\varphi(\overline{a}_i;\overline{a}_j) \Leftrightarrow i < j$

• Equivalently, for some λ , for all subsets $A \subset M \vDash T$ s.t. $|A| \leq \lambda$, $|S_n(A)| \leq \lambda$ (for all finite n.)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ りゃく

background: classification theory

• A theory T is **stable** if it does not have the order property, i.e., there is no formula $\varphi(\overline{x}; \overline{y})$ in the language of T and parameters $\{\overline{a}_i\}_{i < \omega}$ from some model of T such that

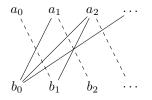
 $\varphi(\overline{a}_i;\overline{a}_j) \Leftrightarrow i < j$

- Equivalently, for some λ , for all subsets $A \subset M \vDash T$ s.t. $|A| \leq \lambda$, $|S_n(A)| \leq \lambda$ (for all finite n.)
- Equivalently, for any definable set $X \subset M^n$ (using parameters from the ambient model), $X \cap A^n$ is definable using only parameters from A the trace of a definable set on A is A-definable.

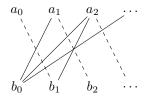
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

• Sometimes to find the order property, we need to look in "higher dimensions."

- Sometimes to find the order property, we need to look in "higher dimensions."
- e.g., in the random graph, look at $\{(a_i, b_i)\}_{i < \omega}$ such that $R(b_i, a_j)$ whenever i < j and $\neg R(a_i, b_j)$ whenever i < j.

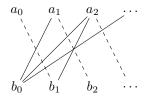


- Sometimes to find the order property, we need to look in "higher dimensions."
- e.g., in the random graph, look at $\{(a_i, b_i)\}_{i < \omega}$ such that $R(b_i, a_j)$ whenever i < j and $\neg R(a_i, b_j)$ whenever i < j.



Get θ s.t. $\theta((a_i, b_i), (a_j, b_j)) \Leftrightarrow i < j$.

- Sometimes to find the order property, we need to look in "higher dimensions."
- e.g., in the random graph, look at $\{(a_i, b_i)\}_{i < \omega}$ such that $R(b_i, a_j)$ whenever i < j and $\neg R(a_i, b_j)$ whenever i < j.



Get θ s.t. $\theta((a_i, b_i), (a_j, b_j)) \Leftrightarrow i < j$.

• How do we know there is no order in 1-variable?

using Ramsey's theorem

• Suppose for contradiction there is $\varphi(x, y)$ such that $\ell(x) = \ell(y) = 1$ and parameters $A = \{a_i\}_i$ with

 $\varphi(a_i, a_j) \Leftrightarrow i < j$

<ロ> < 団> < 目> < 目> < 目> < 目> < 目 > のへで 9 / 21

using Ramsey's theorem

• Suppose for contradiction there is $\varphi(x, y)$ such that $\ell(x) = \ell(y) = 1$ and parameters $A = \{a_i\}_i$ with

$$\varphi(a_i, a_j) \Leftrightarrow i < j$$

• By Ramsey's theorem, there is an indiscernible sequence $B = \{b_i\}_i$ with

$$i < j \Rightarrow M \vDash \varphi(b_i, b_j)$$
$$\neg i < j \Rightarrow M \vDash \neg \varphi(b_i, b_j)$$

(all "increasing pairs" (i, j) are colored " $M \vDash \varphi(a_i, a_j)$ " – find a large enough homogeneous subset $A_0 \subset A$ to stand for a fragment of B)

using Ramsey's theorem

• Suppose for contradiction there is $\varphi(x, y)$ such that $\ell(x) = \ell(y) = 1$ and parameters $A = \{a_i\}_i$ with

$$\varphi(a_i, a_j) \Leftrightarrow i < j$$

• By Ramsey's theorem, there is an indiscernible sequence $B = \{b_i\}_i$ with

$$i < j \Rightarrow M \vDash \varphi(b_i, b_j)$$
$$\neg i < j \Rightarrow M \vDash \neg \varphi(b_i, b_j)$$

(all "increasing pairs" (i, j) are colored " $M \vDash \varphi(a_i, a_j)$ " – find a large enough homogeneous subset $A_0 \subset A$ to stand for a fragment of B)

• By indiscernibility, B is a complete graph or an empty graph (thus an indiscernible set) contradicting disagreement on $\varphi(x, y)$.

Definition

A theory T has NIP ("not the Independence property") if there is no formula $\varphi(\overline{x}; \overline{y})$ in the language of T and parameters $\{\overline{a}_i\}_{i < \omega}$ from some model of T such that

$$\varphi(\overline{a}_i;\overline{a}_j) \Leftrightarrow E(i,j)$$

where E is the edge relation in the random (Rado) graph.

Definition

A theory T has NIP ("not the Independence property") if there is no formula $\varphi(\overline{x}; \overline{y})$ in the language of T and parameters $\{\overline{a}_i\}_{i < \omega}$ from some model of T such that

$$\varphi(\overline{a}_i;\overline{a}_j) \Leftrightarrow E(i,j)$$

where E is the edge relation in the random (Rado) graph.

• The theory of $(\mathbb{Q}, <)$ is NIP.

<ロト (日) (日) (王) (王) (王) (10 / 21

Definition

A theory T has NIP ("not the Independence property") if there is no formula $\varphi(\overline{x}; \overline{y})$ in the language of T and parameters $\{\overline{a}_i\}_{i < \omega}$ from some model of T such that

$$\varphi(\overline{a}_i; \overline{a}_j) \Leftrightarrow E(i, j)$$

where E is the edge relation in the random (Rado) graph.

- The theory of $(\mathbb{Q}, <)$ is NIP.
- The theory of $(\mathbb{Z}, +, \cdot)$ is not NIP.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

characterization theorems *

Theorem (Shelah)

A theory T is stable iff any infinite order-indiscernible sequence in a model of T is an indiscernible set.

(日) (종) (종) (종) (종) (종)

11 / 21

characterization theorems *

Theorem (Shelah)

A theory T is stable iff any infinite order-indiscernible sequence in a model of T is an indiscernible set.

• Let \mathcal{I} be any graph with an ordering on its vertices (in signature $\{<, E\}$) that contains a copy of every finite ordered graph.

characterization theorems *

Theorem (Shelah)

A theory T is stable iff any infinite order-indiscernible sequence in a model of T is an indiscernible set.

• Let \mathcal{I} be any graph with an ordering on its vertices (in signature $\{<, E\}$) that contains a copy of every finite ordered graph.

Theorem

A theory T is NIP iff any \mathcal{I} -indexed indiscernible set in a model of T is an order-indiscernible set.

characterization theorems *

Theorem (Shelah)

A theory T is stable iff any infinite order-indiscernible sequence in a model of T is an indiscernible set.

• Let \mathcal{I} be any graph with an ordering on its vertices (in signature $\{<, E\}$) that contains a copy of every finite ordered graph.

Theorem

A theory T is NIP iff any \mathcal{I} -indexed indiscernible set in a model of T is an order-indiscernible set.

• Can't do better because of $\operatorname{Th}((\mathbb{Q}, <))$.

• For an *I*-indexed set $A = \{a_i \mid i \in I\}$ we can formally define a type in variables $\{x_i \mid i \in I\}$ called the **Ehrenfeucht-Mostowski type of** A, EM(A).

• For an *I*-indexed set $A = \{a_i \mid i \in I\}$ we can formally define a type in variables $\{x_i \mid i \in I\}$ called the **Ehrenfeucht-Mostowski type of** A, EM(A).

Definition

$$\operatorname{EM}(A) = \{ \varphi(x_{i_1}, \dots, x_{i_n}) \mid \text{ for all } (j_1, \dots, j_n) \sim (i_1, \dots, i_n), \\ M \vDash \varphi(a_{j_1}, \dots, a_{j_n}) \}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

examples

• The EM-type encodes rules such as

$$q(i_1,\ldots,i_n) \Rightarrow M \vDash \varphi(a_{i_1},\ldots,a_{i_n})$$

for all $i_1, \ldots, i_n \in I$, where q is a complete (maximally consistent) quantifier-free type in the language of I.

examples

• The EM-type encodes rules such as

$$q(i_1,\ldots,i_n) \Rightarrow M \vDash \varphi(a_{i_1},\ldots,a_{i_n})$$

for all $i_1, \ldots, i_n \in I$, where q is a complete (maximally consistent) quantifier-free type in the language of I.

Example

Consider a set $A = \{a_i \mid i \in (\omega, <)\}$ such that $i < j \Rightarrow \varphi(a_i, a_j)$ but $\neg \varphi(a_1, a_0)$ and $\varphi(a_2, a_0)$, then

$$\varphi(x_0, x_1), \varphi(x_0, x_2), \varphi(x_1, x_2) \ldots \in \text{EM}(A)$$

but

$$\varphi(x_i, x_j), \neg \varphi(x_i, x_j) \notin \text{EM}(A), \text{ for } i > j$$

the modeling property

Definition

 \mathcal{I} -indexed indiscernible sets have the modeling property if for all *I*-indexed parameters $A = \{a_i : i \in I\}$ in any structure M, there exists an \mathcal{I} -indexed indiscernible set B s.t.

 $B \vDash \mathrm{EM}(A)$

the modeling property

Definition

 \mathcal{I} -indexed indiscernible sets have the modeling property if for all *I*-indexed parameters $A = \{a_i : i \in I\}$ in any structure *M*, there exists an \mathcal{I} -indexed indiscernible set *B* s.t.

 $B \vDash \mathrm{EM}(A)$

• For which \mathcal{I} do \mathcal{I} -indexed indiscernible sets have the modeling property?

dictionary theorem

• Suppose that \mathcal{I} is a locally finite structure in a language $L' = \{<, \ldots\}$ where < linearly orders I.

dictionary theorem

- Suppose that \mathcal{I} is a locally finite structure in a language $L' = \{<, \ldots\}$ where < linearly orders I.
- Suppose that any complete quantifier-free type realized in \mathcal{I} is the locus of a quantifier-free formula.

dictionary theorem

- Suppose that \mathcal{I} is a locally finite structure in a language $L' = \{<, \ldots\}$ where < linearly orders I.
- Suppose that any complete quantifier-free type realized in \mathcal{I} is the locus of a quantifier-free formula.

Theorem ([Sco13])

For \mathcal{I} as above, \mathcal{I} -indexed indiscernible sets have the modeling property just in case $age(\mathcal{I})$ is a Ramsey class.

• $\mathcal{I}_0 = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}})$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ 16 / 21

•
$$\mathcal{I}_0 = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}})$$

Theorem (Takeuchi-Tsuboi)

 \mathcal{I}_0 -indexed indiscernibles have the modeling property.

<ロト < 団ト < 臣ト < 臣ト 臣 のQで 16 / 21

•
$$\mathcal{I}_0 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}})$$

Theorem (Takeuchi-Tsuboi)

 \mathcal{I}_0 -indexed indiscernibles have the modeling property.

Corollary (Leeb)

 $age(\mathcal{I}_0)$ is a Ramsey class.

・ロト・西ト・モート ヨー うらの

•
$$\mathcal{I}_0 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}})$$

Theorem (Takeuchi-Tsuboi)

 \mathcal{I}_0 -indexed indiscernibles have the modeling property.

Corollary (Leeb)

 $age(\mathcal{I}_0)$ is a Ramsey class.

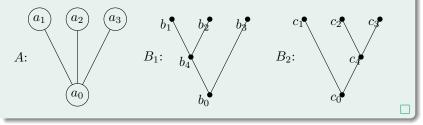
• Removing \land destroys the Ramsey property.

<ロト < 回 > < 巨 > < 巨 > 三 の < で 16 / 21

$\mathcal{K} = \operatorname{age}(\mathcal{I}_0 \upharpoonright \{ \leq, <_{\operatorname{lex}} \})$ is not a Ramsey class *

Proof.

By [Neš05], if \mathcal{K} is a Ramsey class, then \mathcal{K} has the amalgamation property. However, an example analyzed in Takeuchi-Tsuboi provides a counterexample to amalgamation. Consider embeddings $a_i \mapsto b_i, c_i$.



• $\mathcal{I}_s = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}}, (P_n)_{n < \omega})$

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

•
$$\mathcal{I}_s = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}}, (P_n)_{n < \omega})$$

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

•
$$\mathcal{I}_1 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}}, <_{\text{lev}})$$

where $\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu)$ ($\ell = \text{length as a sequence}$)

•
$$\mathcal{I}_s = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}}, (P_n)_{n < \omega})$$

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

•
$$\mathcal{I}_1 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}}, <_{\text{lev}})$$

where $\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu)$ ($\ell = \text{length as a sequence}$)

•
$$\mathcal{I}_0 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}})$$

<ロ> < 団> < 目> < 目> < 目> < 目> < 目 > のへで 18 / 21

•
$$\mathcal{I}_s = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}}, (P_n)_{n < \omega})$$

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

•
$$\mathcal{I}_1 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}}, <_{\text{lev}})$$

where $\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu)$ (ℓ = length as a sequence)

•
$$\mathcal{I}_0 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}})$$

• $\mathcal{I}_0 \upharpoonright \{ \trianglelefteq, <_{\text{lex}} \}$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 18 / 21

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

• $\mathcal{I}_1 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}}, <_{\text{lev}})$

where $\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu)$ (ℓ = length as a sequence)

- $\mathcal{I}_0 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}})$
- $\mathcal{I}_0 \upharpoonright \{ \trianglelefteq, <_{\text{lex}} \}$

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

- $\mathcal{I}_1 = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}}, <_{\text{lev}}) \Rightarrow \text{age is Ramsey}$ where $\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu)$ (ℓ = length as a sequence)
- $\mathcal{I}_0 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}})$
- $\mathcal{I}_0 \upharpoonright \{ \trianglelefteq, <_{\text{lex}} \}$

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

- $\mathcal{I}_1 = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}}, <_{\text{lev}}) \Rightarrow \text{age is Ramsey}$ where $\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu)$ ($\ell = \text{length as a sequence}$)
- $\mathcal{I}_0 = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}}) \Rightarrow \text{age is Ramsey}$
- $\mathcal{I}_0 \upharpoonright \{ \trianglelefteq, <_{lex} \}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

where \leq is the partial tree-order, \wedge is the meet function in this order, $<_{\text{lex}}$ is the lexicographical order, and the P_n are predicates picking out the *n*-th level of the tree

- $\mathcal{I}_1 = (\omega^{<\omega}, \leq, \wedge, <_{\text{lex}}, <_{\text{lev}}) \Rightarrow \text{age is Ramsey}$ where $\eta <_{\text{lev}} \nu \Leftrightarrow \ell(\eta) < \ell(\nu)$ ($\ell = \text{length as a sequence}$)
- $\mathcal{I}_0 = (\omega^{<\omega}, \trianglelefteq, \land, <_{\text{lex}}) \Rightarrow \text{age is Ramsey}$
- $\mathcal{I}_0 \upharpoonright \{ \trianglelefteq, <_{lex} \} \Rightarrow age is not Ramsey$

Theorem ([She90])

For every $n, m < \omega$ there is some $k = k(n, m) < \omega$ such that for any infinite cardinal χ , the following is true of $\lambda := \beth_k(\chi)^+$: for every $f : (n^{\geq}\lambda)^m \to \chi$ there is an L_s -subtree $I \subseteq n^{\geq}\lambda$ such that

Theorem ([She90])

For every $n, m < \omega$ there is some $k = k(n, m) < \omega$ such that for any infinite cardinal χ , the following is true of $\lambda := \beth_k(\chi)^+$: for every $f: (^{n\geq}\lambda)^m \to \chi$ there is an L_s -subtree $I \subseteq ^{n\geq}\lambda$ such that (i) $\langle \rangle \in I$ and whenever $\eta \in I \cap ^{n>}\lambda$, $||\{\alpha < \lambda : \eta^{\frown} \langle \alpha \rangle \in I\}|| \geq \chi^+$.

Theorem ([She90])

For every $n, m < \omega$ there is some $k = k(n, m) < \omega$ such that for any infinite cardinal χ , the following is true of $\lambda := \beth_k(\chi)^+$: for every $f: (n \ge \lambda)^m \to \chi$ there is an L_s -subtree $I \subseteq n \ge \lambda$ such that (i) $\langle \rangle \in I$ and whenever $\eta \in I \cap n > \lambda$, $||\{\alpha < \lambda : \eta \land \langle \alpha \rangle \in I\}|| \ge \chi^+$. (ii)_f If $\bar{\eta}, \bar{\nu} \in I$ are such that $\bar{\eta} \sim_{\mathcal{I}_s} \bar{\nu}$ then $f(\eta_0, \ldots, \eta_{m-1}) = f(\nu_0, \ldots, \nu_{m-1}).$

> <ロト < 回 > < 巨 > < 巨 > 三 のへ(19 / 21

Theorem ([She90])

For every $n, m < \omega$ there is some $k = k(n, m) < \omega$ such that for any infinite cardinal χ , the following is true of $\lambda := \beth_k(\chi)^+$: for every $f: (n^{\geq}\lambda)^m \to \chi$ there is an L_s -subtree $I \subseteq n^{\geq}\lambda$ such that (i) $\langle \rangle \in I$ and whenever $\eta \in I \cap n^> \lambda$, $||\{\alpha < \lambda : \eta^{\frown} \langle \alpha \rangle \in I\}|| \ge \chi^+$. (ii)_f If $\bar{\eta}, \bar{\nu} \in I$ are such that $\bar{\eta} \sim_{\mathcal{I}_s} \bar{\nu}$ then $f(\eta_0, \ldots, \eta_{m-1}) = f(\nu_0, \ldots, \nu_{m-1}).$

Theorem ([Fou99])

 $age(\mathcal{I}_s)$ is a Ramsey class

・ロト (四)、(主)、(主)、(主)、(19 / 21

Theorem ([She90])

For every $n, m < \omega$ there is some $k = k(n, m) < \omega$ such that for any infinite cardinal χ , the following is true of $\lambda := \beth_k(\chi)^+$: for every $f: (n^{\geq}\lambda)^m \to \chi$ there is an L_s -subtree $I \subseteq n^{\geq}\lambda$ such that (i) $\langle \rangle \in I$ and whenever $\eta \in I \cap n^> \lambda$, $||\{\alpha < \lambda : \eta^{\frown} \langle \alpha \rangle \in I\}|| \ge \chi^+$. (ii)_f If $\bar{\eta}, \bar{\nu} \in I$ are such that $\bar{\eta} \sim_{\mathcal{I}_s} \bar{\nu}$ then $f(\eta_0, \ldots, \eta_{m-1}) = f(\nu_0, \ldots, \nu_{m-1}).$

Theorem ([Fou99])

 $age(\mathcal{I}_s)$ is a Ramsey class

Both yield that \mathcal{I}_s -indexed indiscernibles have the modeling property, the second by way of the dictionary theorem.

Thanks for your attention!

W. L. Fouché.

Symmetries and Ramsey properties of trees. Discrete Mathematics, 197/198:325–330, 1999. 16th British Combinatorial Conference (London, 1997).

W. L. Fouché.

Symmetries and Ramsey properties of trees. Discrete Mathematics, 197/198:325–330, 1999. 16th British Combinatorial Conference (London, 1997).

J. Nešetřil.

Homogeneous structures and Ramsey classes. Combinatorics, Probability and Computing, 14:171–189, 2005.

W. L. Fouché.

Symmetries and Ramsey properties of trees. Discrete Mathematics, 197/198:325–330, 1999. 16th British Combinatorial Conference (London, 1997).

J. Nešetřil.

Homogeneous structures and Ramsey classes. Combinatorics, Probability and Computing, 14:171–189, 2005.

L. Scow.

Indiscernibles, EM-types, and Ramsey classes of trees, 2013. preprint.

W. L. Fouché.

Symmetries and Ramsey properties of trees. Discrete Mathematics, 197/198:325–330, 1999. 16th British Combinatorial Conference (London, 1997).

J. Nešetřil.

Homogeneous structures and Ramsey classes. Combinatorics, Probability and Computing, 14:171–189, 2005.

L. Scow.

Indiscernibles, EM-types, and Ramsey classes of trees, 2013. preprint.

S. Shelah.

Classification Theory and the number of non-isomorphic models (revised edition).

North-Holland, Amsterdam-New York, 1990.