# Ramsey classes of trees 

Lynn Scow<br>Vassar College

Winter School in Abstract Analysis 2014

## Outline

(1) background
(2) the modeling property
(3) translation theorem and trees

## preliminaries

- Fix an $L$-structure $M$ ( $L$ is the signature.)


## preliminaries

- Fix an $L$-structure $M$ ( $L$ is the signature.)
- we assume $M$ is sufficiently saturated, so if a small set exists by compactness in an elementary extension of $M$, it exists in $M$..


## preliminaries

- Fix an $L$-structure $M$ ( $L$ is the signature.)
- we assume $M$ is sufficiently saturated, so if a small set exists by compactness in an elementary extension of $M$, it exists in $M$..
- We wish to study the theory of $M$.


## types

- Recall the type of an element, $\operatorname{tp}^{L}(\bar{a} ; M)=\{\varphi(\bar{x})$ an $L$-formula $\mid M \vDash \varphi(\bar{a})\}$
$L$ can be replaced by a subset $\Delta \subseteq L$ to get a $\Delta$-type.
- Recall the type of an element,

$$
\operatorname{tp}^{L}(\bar{a} ; M)=\{\varphi(\bar{x}) \text { an } L \text {-formula } \mid M \vDash \varphi(\bar{a})\}
$$

$L$ can be replaced by a subset $\Delta \subseteq L$ to get a $\Delta$-type.

- We also have the notion of quantifier-free type, $\operatorname{qftp}^{L}(\bar{a} ; M)=\{\theta(\bar{x})$ an $L$-formula |
$\theta$ is quantifier-free, and $M \vDash \theta(\bar{a})\}$
- Recall the type of an element, $\operatorname{tp}^{L}(\bar{a} ; M)=\{\varphi(\bar{x})$ an $L$-formula $\mid M \vDash \varphi(\bar{a})\}$
$L$ can be replaced by a subset $\Delta \subseteq L$ to get a $\Delta$-type.
- We also have the notion of quantifier-free type, $\operatorname{qftp}^{L}(\bar{a} ; M)=\{\theta(\bar{x})$ an $L$-formula |
$\theta$ is quantifier-free, and $M \vDash \theta(\bar{a})\}$
- Roman letters signify the underlying set of a structure, e.g. $\mathcal{O}$ has underlying set $O, \mathcal{I}$ has underlying set $I \ldots$


## order-indiscernible sets

- Let $\mathcal{O}$ be any linear order (typically infinite.)


## order-indiscernible sets

- Let $\mathcal{O}$ be any linear order (typically infinite.)
- Let $b_{i}$ be finite tuples from $M, \ell\left(b_{i}\right)=\ell\left(b_{j}\right)=m$ :


## order-indiscernible sets

- Let $\mathcal{O}$ be any linear order (typically infinite.)
- Let $b_{i}$ be finite tuples from $M, \ell\left(b_{i}\right)=\ell\left(b_{j}\right)=m$ :


## Definition

$B=\left\{b_{i} \mid i \in O\right\}$ is an order-indiscernible set if for all $n \geq 1$, for all $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}$ from $O$,
$\left(i_{1}, \ldots, i_{n}\right) \mapsto\left(j_{1}, \ldots, j_{n}\right)$ is an order-isomorphism $\Rightarrow$

$$
\operatorname{tp}^{L}\left(b_{i_{1}}, \ldots, b_{i_{n}} ; M\right)=\operatorname{tp}^{L}\left(b_{j_{1}}, \ldots, b_{j_{n}} ; M\right)
$$

## order-indiscernible sets

- Let $\mathcal{O}$ be any linear order (typically infinite.)
- Let $b_{i}$ be finite tuples from $M, \ell\left(b_{i}\right)=\ell\left(b_{j}\right)=m$ :


## Definition

$B=\left\{b_{i} \mid i \in O\right\}$ is an order-indiscernible set if for all $n \geq 1$, for all $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}$ from $O$,
$\left(i_{1}, \ldots, i_{n}\right) \mapsto\left(j_{1}, \ldots, j_{n}\right)$ is an order-isomorphism $\Rightarrow$

$$
\operatorname{tp}^{L}\left(b_{i_{1}}, \ldots, b_{i_{n}} ; M\right)=\operatorname{tp}^{L}\left(b_{j_{1}}, \ldots, b_{j_{n}} ; M\right)
$$

## Definition

$B=\left\{b_{i} \mid i \in O\right\}$ is an indiscernible set if for all $n \geq 1$, for all $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}$ from $O$,
$\left(i_{1}, \ldots, i_{n}\right) \mapsto\left(j_{1}, \ldots, j_{n}\right)$ is a $\{=\}$-isomorphism $\Rightarrow$

$$
\operatorname{tp}^{L}\left(b_{i_{1}}, \ldots, b_{i_{n}} ; M\right)=\operatorname{tp}^{L}\left(b_{j_{1}}, \ldots, b_{j_{n}} ; M\right)
$$

## $\mathcal{I}$-indexed indiscernible sets *

- Now we fix an arbitrary language $L^{\prime}$, and an $L^{\prime}$-structure $\mathcal{I}$ in the place of $\mathcal{O}$.


## $\mathcal{I}$-indexed indiscernible sets *

- Now we fix an arbitrary language $L^{\prime}$, and an $L^{\prime}$-structure $\mathcal{I}$ in the place of $\mathcal{O}$.
- For $\bar{\imath}, \bar{\jmath}$ from $I$

$$
\left(i_{1}, \ldots, i_{n}\right) \sim\left(j_{1}, \ldots, j_{n}\right)
$$

will mean $\operatorname{qftp}^{L^{\prime}}\left(i_{1}, \ldots, i_{n} ; \mathcal{I}\right)=\operatorname{qftp}^{L^{\prime}}\left(j_{1}, \ldots, j_{n} ; \mathcal{I}\right)$.
$\left(\sim_{\mathcal{I}}\right.$ if $\mathcal{I}$ not clear from context)

## $\mathcal{I}$-indexed indiscernible sets *

- Now we fix an arbitrary language $L^{\prime}$, and an $L^{\prime}$-structure $\mathcal{I}$ in the place of $\mathcal{O}$.
- For $\bar{\imath}, \bar{\jmath}$ from $I$

$$
\left(i_{1}, \ldots, i_{n}\right) \sim\left(j_{1}, \ldots, j_{n}\right)
$$

will mean $\operatorname{qftp}^{L^{\prime}}\left(i_{1}, \ldots, i_{n} ; \mathcal{I}\right)=\operatorname{qftp}^{L^{\prime}}\left(j_{1}, \ldots, j_{n} ; \mathcal{I}\right)$.
$\left(\sim_{\mathcal{I}}\right.$ if $\mathcal{I}$ not clear from context)

## Definition ([She90])

$B=\left\{b_{i}: i \in I\right\}$ is an $\mathcal{I}$-indexed indiscernible set if for all $n \geq 1$, for all $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}$ from $I$,
$\left(i_{1}, \ldots, i_{n}\right) \sim\left(j_{1}, \ldots, j_{n}\right) \Rightarrow \operatorname{tp}^{L}\left(b_{i_{1}}, \ldots, b_{i_{n}} ; M\right)=\operatorname{tp}^{L}\left(b_{j_{1}}, \ldots, b_{j_{n}} ; M\right)$

## $\mathcal{I}$-indexed indiscernible sets *

- Now we fix an arbitrary language $L^{\prime}$, and an $L^{\prime}$-structure $\mathcal{I}$ in the place of $\mathcal{O}$.
- For $\bar{\imath}, \bar{\jmath}$ from $I$

$$
\left(i_{1}, \ldots, i_{n}\right) \sim\left(j_{1}, \ldots, j_{n}\right)
$$

will mean $\operatorname{qftp}^{L^{\prime}}\left(i_{1}, \ldots, i_{n} ; \mathcal{I}\right)=\operatorname{qftp}^{L^{\prime}}\left(j_{1}, \ldots, j_{n} ; \mathcal{I}\right)$.
( $\sim_{\mathcal{I}}$ if $\mathcal{I}$ not clear from context)

## Definition ([She90])

$B=\left\{b_{i}: i \in I\right\}$ is an $\mathcal{I}$-indexed indiscernible set if for all $n \geq 1$, for all $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n}$ from $I$,
$\left(i_{1}, \ldots, i_{n}\right) \sim\left(j_{1}, \ldots, j_{n}\right) \Rightarrow \operatorname{tp}^{L}\left(b_{i_{1}}, \ldots, b_{i_{n}} ; M\right)=\operatorname{tp}^{L}\left(b_{j_{1}}, \ldots, b_{j_{n}} ; M\right)$

- Say that $B$ is $\Delta$ - $\mathcal{I}$-indexed indiscernible for $\Delta \subseteq L$ if we replace $L$ in the definition by $\Delta$.


## background: classification theory

- A theory $T$ is stable if it does not have the order property, i.e., there is no formula $\varphi(\bar{x} ; \bar{y})$ in the language of $T$ and parameters $\left\{\bar{a}_{i}\right\}_{i<\omega}$ from some model of $T$ such that

$$
\varphi\left(\bar{a}_{i} ; \bar{a}_{j}\right) \Leftrightarrow i<j
$$

## background: classification theory

- A theory $T$ is stable if it does not have the order property, i.e., there is no formula $\varphi(\bar{x} ; \bar{y})$ in the language of $T$ and parameters $\left\{\bar{a}_{i}\right\}_{i<\omega}$ from some model of $T$ such that

$$
\varphi\left(\bar{a}_{i} ; \bar{a}_{j}\right) \Leftrightarrow i<j
$$

- Equivalently, for some $\lambda$, for all subsets $A \subset M \vDash T$ s.t. $|A| \leq \lambda$, $\left|S_{n}(A)\right| \leq \lambda$ (for all finite $n$.)


## background: classification theory

- A theory $T$ is stable if it does not have the order property, i.e., there is no formula $\varphi(\bar{x} ; \bar{y})$ in the language of $T$ and parameters $\left\{\bar{a}_{i}\right\}_{i<\omega}$ from some model of $T$ such that

$$
\varphi\left(\bar{a}_{i} ; \bar{a}_{j}\right) \Leftrightarrow i<j
$$

- Equivalently, for some $\lambda$, for all subsets $A \subset M \vDash T$ s.t. $|A| \leq \lambda$, $\left|S_{n}(A)\right| \leq \lambda$ (for all finite $n$.)
- Equivalently, for any definable set $X \subset M^{n}$ (using parameters from the ambient model), $X \cap A^{n}$ is definable using only parameters from $A$ - the trace of a definable set on $A$ is $A$-definable.


## typical application of order-indiscernible sequences

- Sometimes to find the order property, we need to look in "higher dimensions."


## typical application of order-indiscernible sequences

- Sometimes to find the order property, we need to look in "higher dimensions."
- e.g., in the random graph, look at $\left\{\left(a_{i}, b_{i}\right)\right\}_{i<\omega}$ such that $R\left(b_{i}, a_{j}\right)$ whenever $i<j$ and $\neg R\left(a_{i}, b_{j}\right)$ whenever $i<j$.



## typical application of order-indiscernible sequences

- Sometimes to find the order property, we need to look in "higher dimensions."
- e.g., in the random graph, look at $\left\{\left(a_{i}, b_{i}\right)\right\}_{i<\omega}$ such that $R\left(b_{i}, a_{j}\right)$ whenever $i<j$ and $\neg R\left(a_{i}, b_{j}\right)$ whenever $i<j$.


Get $\theta$ s.t. $\theta\left(\left(a_{i}, b_{i}\right),\left(a_{j}, b_{j}\right)\right) \Leftrightarrow i<j$.

## typical application of order-indiscernible sequences

- Sometimes to find the order property, we need to look in "higher dimensions."
- e.g., in the random graph, look at $\left\{\left(a_{i}, b_{i}\right)\right\}_{i<\omega}$ such that $R\left(b_{i}, a_{j}\right)$ whenever $i<j$ and $\neg R\left(a_{i}, b_{j}\right)$ whenever $i<j$.


Get $\theta$ s.t. $\theta\left(\left(a_{i}, b_{i}\right),\left(a_{j}, b_{j}\right)\right) \Leftrightarrow i<j$.

- How do we know there is no order in 1-variable?


## using Ramsey's theorem

- Suppose for contradiction there is $\varphi(x, y)$ such that $\ell(x)=\ell(y)=1$ and parameters $A=\left\{a_{i}\right\}_{i}$ with

$$
\varphi\left(a_{i}, a_{j}\right) \Leftrightarrow i<j
$$

## using Ramsey's theorem

- Suppose for contradiction there is $\varphi(x, y)$ such that $\ell(x)=\ell(y)=1$ and parameters $A=\left\{a_{i}\right\}_{i}$ with

$$
\varphi\left(a_{i}, a_{j}\right) \Leftrightarrow i<j
$$

- By Ramsey's theorem, there is an indiscernible sequence $B=\left\{b_{i}\right\}_{i}$ with

$$
\begin{gathered}
i<j \Rightarrow M \vDash \varphi\left(b_{i}, b_{j}\right) \\
\neg i<j \Rightarrow M \vDash \neg \varphi\left(b_{i}, b_{j}\right)
\end{gathered}
$$

(all "increasing pairs" $(i, j)$ are colored " $M \vDash \varphi\left(a_{i}, a_{j}\right)$ " - find a large enough homogeneous subset $A_{0} \subset A$ to stand for a fragment of $B$ )

## using Ramsey's theorem

- Suppose for contradiction there is $\varphi(x, y)$ such that $\ell(x)=\ell(y)=1$ and parameters $A=\left\{a_{i}\right\}_{i}$ with

$$
\varphi\left(a_{i}, a_{j}\right) \Leftrightarrow i<j
$$

- By Ramsey's theorem, there is an indiscernible sequence $B=\left\{b_{i}\right\}_{i}$ with

$$
\begin{gathered}
i<j \Rightarrow M \vDash \varphi\left(b_{i}, b_{j}\right) \\
\neg i<j \Rightarrow M \vDash \neg \varphi\left(b_{i}, b_{j}\right)
\end{gathered}
$$

(all "increasing pairs" $(i, j)$ are colored " $M \vDash \varphi\left(a_{i}, a_{j}\right)$ " - find a large enough homogeneous subset $A_{0} \subset A$ to stand for a fragment of $B$ )

- By indiscernibility, $B$ is a complete graph or an empty graph (thus an indiscernible set) contradicting disagreement on $\varphi(x, y)$.


## Definition

A theory $T$ has NIP ("not the Independence property") if there is no formula $\varphi(\bar{x} ; \bar{y})$ in the language of $T$ and parameters $\left\{\bar{a}_{i}\right\}_{i<\omega}$ from some model of $T$ such that

$$
\varphi\left(\bar{a}_{i} ; \bar{a}_{j}\right) \Leftrightarrow E(i, j)
$$

where $E$ is the edge relation in the random (Rado) graph.

## Definition

A theory $T$ has NIP ("not the Independence property") if there is no formula $\varphi(\bar{x} ; \bar{y})$ in the language of $T$ and parameters $\left\{\bar{a}_{i}\right\}_{i<\omega}$ from some model of $T$ such that

$$
\varphi\left(\bar{a}_{i} ; \bar{a}_{j}\right) \Leftrightarrow E(i, j)
$$

where $E$ is the edge relation in the random (Rado) graph.

- The theory of $(\mathbb{Q},<)$ is NIP.


## Definition

A theory $T$ has NIP ("not the Independence property") if there is no formula $\varphi(\bar{x} ; \bar{y})$ in the language of $T$ and parameters $\left\{\bar{a}_{i}\right\}_{i<\omega}$ from some model of $T$ such that

$$
\varphi\left(\bar{a}_{i} ; \bar{a}_{j}\right) \Leftrightarrow E(i, j)
$$

where $E$ is the edge relation in the random (Rado) graph.

- The theory of $(\mathbb{Q},<)$ is NIP.
- The theory of $(\mathbb{Z},+, \cdot)$ is not NIP.


## characterization theorems *

## Theorem (Shelah)

A theory $T$ is stable iff any infinite order-indiscernible sequence in a model of $T$ is an indiscernible set.

## characterization theorems *

## Theorem (Shelah)

A theory $T$ is stable iff any infinite order-indiscernible sequence in a model of $T$ is an indiscernible set.

- Let $\mathcal{I}$ be any graph with an ordering on its vertices (in signature $\{<, E\})$ that contains a copy of every finite ordered graph.


## characterization theorems *

## Theorem (Shelah)

A theory $T$ is stable iff any infinite order-indiscernible sequence in a model of $T$ is an indiscernible set.

- Let $\mathcal{I}$ be any graph with an ordering on its vertices (in signature $\{<, E\})$ that contains a copy of every finite ordered graph.


## Theorem

A theory $T$ is NIP iff any $\mathcal{I}$-indexed indiscernible set in a model of $T$ is an order-indiscernible set.

## characterization theorems *

## Theorem (Shelah)

A theory $T$ is stable iff any infinite order-indiscernible sequence in a model of $T$ is an indiscernible set.

- Let $\mathcal{I}$ be any graph with an ordering on its vertices (in signature $\{<, E\})$ that contains a copy of every finite ordered graph.


## Theorem

A theory $T$ is NIP iff any $\mathcal{I}$-indexed indiscernible set in a model of $T$ is an order-indiscernible set.

- Can't do better because of $\operatorname{Th}((\mathbb{Q},<))$.


## EM-types *

- For an $I$-indexed set $A=\left\{a_{i} \mid i \in I\right\}$ we can formally define a type in variables $\left\{x_{i} \mid i \in I\right\}$ called the Ehrenfeucht-Mostowski type of $A, \operatorname{EM}(A)$.


## EM-types *

- For an $I$-indexed set $A=\left\{a_{i} \mid i \in I\right\}$ we can formally define a type in variables $\left\{x_{i} \mid i \in I\right\}$ called the Ehrenfeucht-Mostowski type of $A, \operatorname{EM}(A)$.


## Definition

$\operatorname{EM}(A)=\left\{\varphi\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \mid\right.$ for all $\left(j_{1}, \ldots, j_{n}\right) \sim\left(i_{1}, \ldots, i_{n}\right)$,

$$
\left.M \vDash \varphi\left(a_{j_{1}}, \ldots, a_{j_{n}}\right)\right\}
$$

## examples

- The EM-type encodes rules such as

$$
q\left(i_{1}, \ldots, i_{n}\right) \Rightarrow M \vDash \varphi\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)
$$

for all $i_{1}, \ldots, i_{n} \in I$, where $q$ is a complete (maximally consistent) quantifier-free type in the language of $I$.

## examples

- The EM-type encodes rules such as

$$
q\left(i_{1}, \ldots, i_{n}\right) \Rightarrow M \vDash \varphi\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)
$$

for all $i_{1}, \ldots, i_{n} \in I$,
where $q$ is a complete (maximally consistent) quantifier-free type in the language of $I$.

## Example

Consider a set $A=\left\{a_{i} \mid i \in(\omega,<)\right\}$ such that $i<j \Rightarrow \varphi\left(a_{i}, a_{j}\right)$ but $\neg \varphi\left(a_{1}, a_{0}\right)$ and $\varphi\left(a_{2}, a_{0}\right)$, then

$$
\varphi\left(x_{0}, x_{1}\right), \varphi\left(x_{0}, x_{2}\right), \varphi\left(x_{1}, x_{2}\right) \ldots \in \operatorname{EM}(A)
$$

but

$$
\varphi\left(x_{i}, x_{j}\right), \neg \varphi\left(x_{i}, x_{j}\right) \notin \operatorname{EM}(A), \text { for } i>j
$$

## the modeling property

## Definition

$\mathcal{I}$-indexed indiscernible sets have the modeling property if for all $I$-indexed parameters $A=\left\{a_{i}: i \in I\right\}$ in any structure $M$, there exists an $\mathcal{I}$-indexed indiscernible set $B$ s.t.

$$
B \vDash \operatorname{EM}(A)
$$

## the modeling property

## Definition

$\mathcal{I}$-indexed indiscernible sets have the modeling property if for all $I$-indexed parameters $A=\left\{a_{i}: i \in I\right\}$ in any structure $M$, there exists an $\mathcal{I}$-indexed indiscernible set $B$ s.t.

$$
B \vDash \operatorname{EM}(A)
$$

- For which $\mathcal{I}$ do $\mathcal{I}$-indexed indiscernible sets have the modeling property?


## dictionary theorem

- Suppose that $\mathcal{I}$ is a locally finite structure in a language $L^{\prime}=\{<, \ldots\}$ where $<$ linearly orders $I$.


## dictionary theorem

- Suppose that $\mathcal{I}$ is a locally finite structure in a language $L^{\prime}=\{<, \ldots\}$ where $<$ linearly orders $I$.
- Suppose that any complete quantifier-free type realized in $\mathcal{I}$ is the locus of a quantifier-free formula.


## dictionary theorem

- Suppose that $\mathcal{I}$ is a locally finite structure in a language $L^{\prime}=\{<, \ldots\}$ where $<$ linearly orders $I$.
- Suppose that any complete quantifier-free type realized in $\mathcal{I}$ is the locus of a quantifier-free formula.


## Theorem ([Sco13])

For $\mathcal{I}$ as above, $\mathcal{I}$-indexed indiscernible sets have the modeling property just in case age $(\mathcal{I})$ is a Ramsey class.

## application

- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$


## application

- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$

Theorem (Takeuchi-Tsuboi)
$\mathcal{I}_{0}$-indexed indiscernibles have the modeling property.

## application

- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$


## Theorem (Takeuchi-Tsuboi)

$\mathcal{I}_{0}$-indexed indiscernibles have the modeling property.

Corollary (Leeb)
age $\left(\mathcal{I}_{0}\right)$ is a Ramsey class.

## application

- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$


## Theorem (Takeuchi-Tsuboi)

$\mathcal{I}_{0}$-indexed indiscernibles have the modeling property.

## Corollary (Leeb) <br> age $\left(\mathcal{I}_{0}\right)$ is a Ramsey class.

- Removing $\wedge$ destroys the Ramsey property.


## $\mathcal{K}=\operatorname{age}\left(\mathcal{I}_{0} \upharpoonright\left\{\unlhd,<_{\text {lex }}\right\}\right)$ is not a Ramsey class *

## Proof.

By [Neš05], if $\mathcal{K}$ is a Ramsey class, then $\mathcal{K}$ has the amalgamation property. However, an example analyzed in Takeuchi-Tsuboi provides a counterexample to amalgamation. Consider embeddings $a_{i} \mapsto b_{i}, c_{i}$.


- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right)$
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right)$
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{1}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},<_{\text {lev }}\right)$
where $\eta<_{\text {lev }} \nu \Leftrightarrow \ell(\eta)<\ell(\nu)(\ell=$ length as a sequence $)$
- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right)$
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{1}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},<_{\text {lev }}\right)$
where $\eta<_{\text {lev }} \nu \Leftrightarrow \ell(\eta)<\ell(\nu)(\ell=$ length as a sequence $)$
- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$
- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right)$
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{1}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},<_{\text {lev }}\right)$
where $\eta<_{\text {lev }} \nu \Leftrightarrow \ell(\eta)<\ell(\nu)(\ell=$ length as a sequence $)$
- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$
- $\mathcal{I}_{0} \upharpoonright\left\{\unlhd,<_{\operatorname{lex}}\right\}$
- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right) \Rightarrow$ age is Ramsey
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{1}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},<_{\text {lev }}\right)$
where $\eta<_{\text {lev }} \nu \Leftrightarrow \ell(\eta)<\ell(\nu)(\ell=$ length as a sequence $)$
- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$
- $\mathcal{I}_{0} \upharpoonright\left\{\unlhd,<_{\operatorname{lex}}\right\}$
- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right) \Rightarrow$ age is Ramsey
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{1}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},<_{\text {lev }}\right) \Rightarrow$ age is Ramsey
where $\eta<_{\text {lev }} \nu \Leftrightarrow \ell(\eta)<\ell(\nu)(\ell=$ length as a sequence $)$
- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right)$
- $\mathcal{I}_{0} \upharpoonright\left\{\unlhd,<_{\operatorname{lex}}\right\}$
- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right) \Rightarrow$ age is Ramsey
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{1}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},<_{\text {lev }}\right) \Rightarrow$ age is Ramsey
where $\eta<_{\text {lev }} \nu \Leftrightarrow \ell(\eta)<\ell(\nu)(\ell=$ length as a sequence $)$
- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right) \Rightarrow$ age is Ramsey
- $\mathcal{I}_{0} \upharpoonright\left\{\unlhd,<_{\operatorname{lex}}\right\}$
- $\mathcal{I}_{s}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},\left(P_{n}\right)_{n<\omega}\right) \Rightarrow$ age is Ramsey
where $\unlhd$ is the partial tree-order, $\wedge$ is the meet function in this order, $<_{\text {lex }}$ is the lexicographical order, and the $P_{n}$ are predicates picking out the $n$-th level of the tree
- $\mathcal{I}_{1}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }},<_{\text {lev }}\right) \Rightarrow$ age is Ramsey
where $\eta<_{\text {lev }} \nu \Leftrightarrow \ell(\eta)<\ell(\nu)(\ell=$ length as a sequence $)$
- $\mathcal{I}_{0}=\left(\omega^{<\omega}, \unlhd, \wedge,<_{\text {lex }}\right) \Rightarrow$ age is Ramsey
- $\mathcal{I}_{0} \upharpoonright\left\{\unlhd,<_{\text {lex }}\right\} \Rightarrow$ age is not Ramsey


## finitary infinitary

## Theorem ([She90])

For every $n, m<\omega$ there is some $k=k(n, m)<\omega$ such that for any infinite cardinal $\chi$, the following is true of $\lambda:=\beth_{k}(\chi)^{+}$: for every $f:\left({ }^{n \geq} \lambda\right)^{m} \rightarrow \chi$ there is an $L_{s}$-subtree $I \subseteq{ }^{n \geq} \lambda$ such that

## finitary infinitary

## Theorem ([She90])

For every $n, m<\omega$ there is some $k=k(n, m)<\omega$ such that for any infinite cardinal $\chi$, the following is true of $\lambda:=\beth_{k}(\chi)^{+}$: for every $f:\left({ }^{n} \lambda\right)^{m} \rightarrow \chi$ there is an $L_{s}$-subtree $I \subseteq{ }^{n \geq} \lambda$ such that
(i) $\left\rangle \in I\right.$ and whenever $\eta \in I \cap^{n>} \lambda,\left\|\left\{\alpha<\lambda: \eta^{\wedge}\langle\alpha\rangle \in I\right\}\right\| \geq \chi^{+}$.

## finitary infinitary

## Theorem ([She90])

For every $n, m<\omega$ there is some $k=k(n, m)<\omega$ such that for any infinite cardinal $\chi$, the following is true of $\lambda:=\beth_{k}(\chi)^{+}$: for every $f:\left({ }^{n \geq} \lambda\right)^{m} \rightarrow \chi$ there is an $L_{s}$-subtree $I \subseteq{ }^{n \geq} \lambda$ such that
(i) $\left\rangle \in I\right.$ and whenever $\eta \in I \cap^{n>} \lambda,\left\|\left\{\alpha<\lambda: \eta^{\wedge}\langle\alpha\rangle \in I\right\}\right\| \geq \chi^{+}$.
(ii) $_{f}$ If $\bar{\eta}, \bar{\nu} \in I$ are such that $\bar{\eta} \sim_{\mathcal{I}_{s}} \bar{\nu}$ then $f\left(\eta_{0}, \ldots, \eta_{m-1}\right)=f\left(\nu_{0}, \ldots, \nu_{m-1}\right)$.

## finitary infinitary

## Theorem ([She90])

For every $n, m<\omega$ there is some $k=k(n, m)<\omega$ such that for any infinite cardinal $\chi$, the following is true of $\lambda:=\beth_{k}(\chi)^{+}$: for every $f:\left({ }^{n \geq} \lambda\right)^{m} \rightarrow \chi$ there is an $L_{s}$-subtree $I \subseteq{ }^{n \geq} \lambda$ such that
(i) $\left\rangle \in I\right.$ and whenever $\eta \in I \cap^{n>} \lambda,\left\|\left\{\alpha<\lambda: \eta^{\wedge}\langle\alpha\rangle \in I\right\}\right\| \geq \chi^{+}$.
(ii) $)_{f}$ If $\bar{\eta}, \bar{\nu} \in I$ are such that $\bar{\eta} \sim_{\mathcal{I}_{s}} \bar{\nu}$ then $f\left(\eta_{0}, \ldots, \eta_{m-1}\right)=f\left(\nu_{0}, \ldots, \nu_{m-1}\right)$.

## Theorem ([Fou99])

$\operatorname{age}\left(\mathcal{I}_{s}\right)$ is a Ramsey class

## finitary infinitary

## Theorem ([She90])

For every $n, m<\omega$ there is some $k=k(n, m)<\omega$ such that for any infinite cardinal $\chi$, the following is true of $\lambda:=\beth_{k}(\chi)^{+}$: for every $f:\left({ }^{n \geq} \lambda\right)^{m} \rightarrow \chi$ there is an $L_{s}$-subtree $I \subseteq{ }^{n \geq} \lambda$ such that
(i) $\left\rangle \in I\right.$ and whenever $\eta \in I \cap^{n>} \lambda,\left\|\left\{\alpha<\lambda: \eta^{\wedge}\langle\alpha\rangle \in I\right\}\right\| \geq \chi^{+}$.
(ii) $f_{f}$ If $\bar{\eta}, \bar{\nu} \in I$ are such that $\bar{\eta} \sim_{\mathcal{I}_{s}} \bar{\nu}$ then

$$
f\left(\eta_{0}, \ldots, \eta_{m-1}\right)=f\left(\nu_{0}, \ldots, \nu_{m-1}\right)
$$

## Theorem ([Fou99])

$\operatorname{age}\left(\mathcal{I}_{s}\right)$ is a Ramsey class
Both yield that $\mathcal{I}_{s}$-indexed indiscernibles have the modeling property, the second by way of the dictionary theorem.

## Thanks

Thanks for your attention!

## References

E
W. L. Fouché.

Symmetries and Ramsey properties of trees.
Discrete Mathematics, 197/198:325-330, 1999.
16th British Combinatorial Conference (London, 1997).

## References

害
W. L. Fouché.

Symmetries and Ramsey properties of trees.
Discrete Mathematics, 197/198:325-330, 1999.
16th British Combinatorial Conference (London, 1997).
J. Nešetřil.

Homogeneous structures and Ramsey classes. Combinatorics, Probability and Computing, 14:171-189, 2005.

## References

W. L. Fouché.Symmetries and Ramsey properties of trees.
Discrete Mathematics, 197/198:325-330, 1999.
16th British Combinatorial Conference (London, 1997).
围
J. Nešetřil.

Homogeneous structures and Ramsey classes. Combinatorics, Probability and Computing, 14:171-189, 2005.L. Scow.

Indiscernibles, EM-types, and Ramsey classes of trees, 2013. preprint.

## References

国
W．L．Fouché．
Symmetries and Ramsey properties of trees．
Discrete Mathematics，197／198：325－330， 1999.
16th British Combinatorial Conference（London，1997）．
國
J．Nešetřil．
Homogeneous structures and Ramsey classes．

> Combinatorics，Probability and Computing，14：171－189， 2005.

屏
L．Scow．
Indiscernibles，EM－types，and Ramsey classes of trees， 2013.
preprint．
圊 S．Shelah．
Classification Theory and the number of non－isomorphic models （revised edition）．
North－Holland，Amsterdam－New York， 1990.

