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preliminaries

o Fix an L-structure M (L is the signature.)

o we assume M is sufficiently saturated, so if a small set exists by
compactness in an elementary extension of M, it exists in M..

o We wish to study the theory of M.
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@ Recall the type of an element,

tpL(@; M) = {p(Z) an L-formula | M F p(a)}

L can be replaced by a subset A C L to get a A-type.

o We also have the notion of quantifier-free type,

qftp™ (@; M) = {6(%) an L-formula |
0 is quantifier-free, and M E 6(a)}

o Roman letters signify the underlying set of a structure, e.g. O
has underlying set O, Z has underlying set I ...
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o Let O be any linear order (typically infinite.)

o Let b; be finite tuples from M, £(b;) = £(b;) = m:

B = {b | i € O} is an order-indiscernible set if for all n > 1, for all
Uy e vslny J1y---,Jn from O,

(i1, yin) = (41,--.,Jn) is an order-isomorphism =

tpL(bil,...,bin;M) :tpL(bjl,...,bjn;M)

Definition

B= {b | i € O} is an indiscernible set if for all n > 1, for all
15580, J1,- - -5 Jn from O,

(i1, -+ y8n) = (J1s---,Jn) is a {=}-isomorphism =

tpL(biy, ..., b, M) —tpL(bjl,...,bjn;M)
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o Now we fix an arbitrary language L', and an L’-structure Z in
the place of O.
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o Now we fix an arbitrary language L', and an L’-structure Z in
the place of O.

e For 7,7 from I
(il,...,in) ~ (_7177.7n)

will mean qftpL,(il, cenyin; ) = qftpL, (J1y -y dns Z).
(~z if Z not clear from context)

Definition ([She90])

B = {b; : i € I'} is an Z-indexed indiscernible set if for all n > 1,
for all 41,...,%p, J1,..-,Jn from I,

(il,...,’in) ~ (]1,,]n) = tpL(bil,...,bin;M) :tpL(bjl,...,bjn;M)

o Say that B is A-Z-indexed indiscernible for A C L if we replace
L in the definition by A.
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background: classification theory

o A theory T is stable if it does not have the order property, i.e.,
there is no formula ¢(Z;y) in the language of T and parameters
{@;}i<w from some model of T such that

plasa;) < i<j
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background: classification theory

o A theory T is stable if it does not have the order property, i.e.,
there is no formula ¢(Z;y) in the language of T and parameters
{@;}i<w from some model of T such that

plasa;) < i<j

o Equivalently, for some A, for all subsets A C M E T s.t. |A| <A,
[Sn(A)| < A (for all finite n.)

o Equivalently, for any definable set X C M™ (using parameters
from the ambient model), X N A™ is definable using only
parameters from A — the trace of a definable set on A is
A-definable.
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o Sometimes to find the order property, we need to look in “higher
dimensions.”
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typical application of order-indiscernible sequences

o Sometimes to find the order property, we need to look in “higher
dimensions.”

@ e.g., in the random graph, look at {(a;, b;)}i<. such that
R(b;, a;) whenever ¢ < j and —R(a;, b;) whenever ¢ < j.

Get 0 s.t. 9((0@,1)@), (aj,bj)) S < ]

e How do we know there is no order in 1-variable?
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using Ramsey’s theorem

@ Suppose for contradiction there is ¢(x,y) such that
{(z) = £(y) = 1 and parameters A = {a;}; with

@(ai,aj) <1< j
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using Ramsey’s theorem

@ Suppose for contradiction there is ¢(x,y) such that
£(z) = {(y) = 1 and parameters A = {a;}; with

@(ai,aj) i< j

o By Ramsey’s theorem, there is an indiscernible sequence
“w<j=ME ﬁ(p(bi,bj)
(all “increasing pairs” (i, j) are colored “M F ¢(a;,a;)” — find a

large enough homogeneous subset Ay C A to stand for a fragment
of B)

o By indiscernibility, B is a complete graph or an empty graph
(thus an indiscernible set) contradicting disagreement on ¢(z,y).
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Definition

A theory T has NIP (“not the Independence property”) if there is no
formula ¢(Z;7) in the language of T' and parameters {@; };<,, from
some model of T" such that

@(ai;aj) <~ E(’L,])

where E is the edge relation in the random (Rado) graph.
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A theory T has NIP (“not the Independence property”) if there is no
formula ¢(Z;7) in the language of T' and parameters {@; };<,, from
some model of T" such that

@(ai;aj) <~ E(’L,])

where E is the edge relation in the random (Rado) graph.

o The theory of (Q, <) is NIP.

o The theory of (Z,+,-) is not NIP.
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the modeling property

characterization theorems *

A theory T is stable iff any infinite order-indiscernible sequence in a
model of T is an indiscernible set.
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characterization theorems *

A theory T is stable iff any infinite order-indiscernible sequence in a
model of T is an indiscernible set.

o Let Z be any graph with an ordering on its vertices (in signature
{<, E}) that contains a copy of every finite ordered graph.

A theory T is NIP iff any Z-indexed indiscernible set in a model of T
is an order-indiscernible set.

o Can’t do better because of Th((Q, <)).
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o For an I-indexed set A = {a; | i € I'} we can formally define a
type in variables {z; | i € I} called the
Ehrenfeucht-Mostowski type of A, EM(A).
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o For an I-indexed set A = {a; | i € I'} we can formally define a
type in variables {z; | i € I} called the
Ehrenfeucht-Mostowski type of A, EM(A).

EM(A) = {o(xiy, ..., x;,) | forall (j1,...,5n) ~ (G1,---,0n),

ME ¢(aj,,...,a5,)}
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the modeling property

examples

o The EM-type encodes rules such as

q(i1, .. yin) = MEp(ai,...,ai,)

for all 41,...,i, € I,
where ¢ is a complete (maximally consistent) quantifier-free type
in the language of I.

13 / 21



examples

o The EM-type encodes rules such as

q(i1, .. yin) = MEp(ai,...,ai,)

for all 41,...,i, € I,

where ¢ is a complete (maximally consistent) quantifier-free type
in the language of I.

Example

Consider a set A = {a; | i € (w, <)} such that i < j = ¢(a;,a;) but
—p(ay,ap) and p(as,ap), then

QO(.’]J(),Zl'l), @(x07$2)) (,0(931,562) ... € EM(A)
but

o(xi, z5), oz, x;) ¢ EM(A), for i > j
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the

the modeling property

Z-indexed indiscernible sets have the modeling property if for
all I-indexed parameters A = {a; : i € I} in any structure M, there
exists an Z-indexed indiscernible set B s.t.

B EEM(A)

14 / 21



the modeling property

Z-indexed indiscernible sets have the modeling property if for
all I-indexed parameters A = {a; : i € I} in any structure M, there
exists an Z-indexed indiscernible set B s.t.

B EEM(A)

o For which Z do Z-indexed indiscernible sets have the modeling
property?
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translation theorem and trees

dictionary theorem

e Suppose that 7 is a locally finite structure in a language
L' = {<,...} where < linearly orders I.
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translation theorem and trees

dictionary theorem

e Suppose that 7 is a locally finite structure in a language
L' = {<,...} where < linearly orders I.

@ Suppose that any complete quantifier-free type realized in Z is
the locus of a quantifier-free formula.

Theorem ([Scol3])

For T as above, T-indexed indiscernible sets have the modeling
property just in case age(Z) is a Ramsey class.
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application
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translation theorem and trees

application

° IO = (w<w, ﬁa /\? <lex)

Theorem (Takeuchi-Tsuboi)

To-indezed indiscernibles have the modeling property.

Corollary (Leeb)

age(Zo) is a Ramsey class.

o Removing A destroys the Ramsey property.
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translation theorem and trees

IC = age(Zy | {d, <iex}) is not a Ramsey class *

Proof.

By [Nes05], if K is a Ramsey class, then K has the amalgamation
property. However, an example analyzed in Takeuchi-Tsuboi provides
a counterexample to amalgamation. Consider embeddings a; — b;, ¢;.

@) @) (9 W8 s

A: Blf b4

@ bo
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translation theorem and trees

° Iy = (w<w7 <A, <lex, (Pn)n<w)

where < is the partial tree-order, A is the meet function in this
order, <jex is the lexicographical order, and the P, are predicates
picking out the n-th level of the tree
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translation theorem and trees

° IS = (w<w7 S’) /\7 <lexs (Pn)n<w) = age is Ramsey

where < is the partial tree-order, A is the meet function in this
order, <jex is the lexicographical order, and the P, are predicates
picking out the n-th level of the tree

e Il = (w<w, S]a A, <lex, <lev) = age is Ramsey

where 1 <jey v < £(n) < £(v) (£ = length as a sequence)
o 7y = (w<¥, 9, A, <1ex) = age is Ramsey

° IO F {S‘a <lex}
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translation theorem and trees

0 T, = (w<¥ <, A, <iex, (Pn)n<w) = age is Ramsey

where < is the partial tree-order, A is the meet function in this
order, <jex is the lexicographical order, and the P, are predicates
picking out the n-th level of the tree

e Il = (w<w, S]a A, <lex, <lcv) = age is Ramsey

where 1 <jey v < £(n) < £(v) (£ = length as a sequence)
o 7y = (w<¥, 9, A, <1ex) = age is Ramsey

o 7y | {9, <jex} = age is not Ramsey
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translation theorem and trees

finitary infinitary

Theorem ([She90])

For every n,m < w there is some k = k(n,m) < w such that for any
infinite cardinal x, the following is true of X\ := Jx(x)™: for every
f:("ZN)™ = x there is an Lg-subtree I C "=\ such that
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finitary infinitary

Theorem ([She90])

For every n,m < w there is some k = k(n,m) < w such that for any
infinite cardinal x, the following is true of X\ := Jx(x)™: for every
f:("ZN)™ = x there is an Lg-subtree I C "=\ such that
(i) () € I and whenever n € IN™\, |[{a < X:n”(a) € I}|| > xT.
(ii); If 7,0 € I are such that fj ~7, U then
f(n07 OO ,nm—l) = f(VOa 000y Vm—l)'

Theorem ([Fou99])

age(Zs) is a Ramsey class

Both yield that Zs-indexed indiscernibles have the modeling property,
the second by way of the dictionary theorem.
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translation theorem and trees

Thanks

Thanks for your attention!
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